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Abstract

> ) A simple procedure is proposed to determine a sample pize for estimating
the mean weight of items in a problem of obtaining a batcﬁ of a large number of
items. Suppose it is deséred to obtain a large number N; of items for which

individual counting is/{mpractical but one can demand a batch to weigh at

least w units and hope that the number of items in the batch 1s close to the

f}.: s
desired number Ng If the items havelmean weight 8, it is reasonable to have
¢ it /
w equal to qu when & is known. When Q is unknown, one can take a sample of

J[\)

51ze n, not bigger than Ng estlmate e by a good estimator 6 and set w equal

J

to é\N . The proposed procedure determines the sample size to be the integer
. - A 3 . .
closest toijN , where C is a function of the cost coefficients if the

coefficient of varlatlon};[is known. It is shown to be optimal in some sense.
If,;‘is unknown, a simple sequential procedure is proposed for which the
average sample number is shown to be asymptotically equal to the optimal fixed{n; _
sample size. When the weights are assumed to have & gamma distribution given @

and ¢ has a prior inverted gamma distribution, the optimal sample size in some

bt Ri.
sense can be found to be the nonnegative integer closest to\)CN + d?A ¢c-1),

J

- e e T o r‘, o

where A is a known constant given in the prior distribution.-

e

Key Words:
Optimal sample size; total weight; mean weight; nonparametric; sequential

procedure; Bayes procedure.

e O e O T A . R L N R A R LR

|
AT TN - o . o .
hE N e INTIE A W 1T AP Y ‘M .uf.l l_imi:m F A N T AP A SN B SR A.\Ji



A S VA LA AT AL I A A NN T I AT T TN ST

1. Introduction.

Suppose it is desired to obtain a batch of a large number N of items and
it is impractical to count them individually. However, it is possible to
require the batch to have at least a certain weight w and hope that the number
N of items in the batch is close to Ng. The problem then is to determine w.
If the weight of the items is constant and is equal to © each, then w = GNS.
When a batch with weight w is delivered, it will contain exactly N, items,
However, if the weights of the items follow a distribution with mean 6 and
nonzero variance cz, then even if 6 is known, the reasonable weight w = eNs
will not yield a batch of exactly N, items. Instead, the number N of items is
determined by

N = inf {k>1 : X+t X 2 w}, (1.1)
where the X’s are the weights of the items and the actual total weight

*
w =X

1 *r--t Xy Even in this case of known mean 6, N sc determined will
incur a mean squared error of

E(n-, ) (1.2)
which is not zero unless 02 = 0. If the mean weight 6 of each item is unknown,

it is possible to take a sample {Xl,..., Xn} of size n (not bigger than Ns) to
have a good estimate R of 6 and determine

W= X1 +...4 xn + (Ns—n)en. (1.3)

(The case of known © corresponds to that n=0, and en ©.) The original
problem has then become that of determining (a) a sample size n, (b) a good

estimate Gn of 8 and (c) the total weight w demanded. Guttman and Menzefricke
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(1986) have invest .gated this problem by assuming that the distribution of the
X’'s given 6 is normal with unknown mean 6 and known variance 02 and 6 has a
known prior normal distribution. 1In this case, they have attempted to choose n
so that

E(K_(N-N_)% + K_ n) (1.4)
is minimized, where Ke and Ks are the known cost coefficients, én is the
posterior mean and w is Xjtoo 4K+ (Ns—n)én. They have applied a fundamental
equation in renewal theory given as (2.1) in their paper to compute (1.4).
However, since the X’s are assumed to have a normal distribution, (2.1) would
not hold. Al;hough it is well-known (cf. Feller II, p.372) that the asymptotic
distribution of N given w is normal with mean w/6 and variance waz/e3 as Ns
becomes large, it is not clear how the development in Guttman and Menzefricke
(1986) is theoretically justified. Moreover, even if the development has been
fully justified, the determination of the optimal sample size n has not been so
easy; it would have to involve some quite complicated computation.

In this note, we shall develop a treatment of the aforementioned problem,
using the asymptotic renewal theory. As a result, the determination of a
sample size will be very easy and simple arithmetic under various scenarios.
Specifically, we shall make the following standing assumptions. Let R SYERE
be independent and identically distributed random variables (representing the
individual weights of the items and not necessarily normal) with positive mean

€ and variance 02. For each nonnegative integer n, let w be defined as in

(1.3) and N be defined as in (1.1). The problem is to choose n and én in (1.3)

-
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X so that (1.4) is minimized in some sense. We shall specify in what sense n is
f chosen optimally in each of the following cases being studied: (a) the mean ©
:ﬁ is a known constant, (b) the mean 6 is an unknown constant, (c) the mean 8 is
; an unknown random variable having a known distribution and (d) the mean @ is an
’ unknown random variable having an unknown distribution.
2. The mean 6 is a known constant.
,E In this section, instead of assuming normality for the distribution of the
T: X’'s, we shall assume that the X’s follow a nonparametric distribution and we
N know the mean 6. 1In this case, the obvious choice of n is zero and the natural
35 choice of én is 6. Then w = e, and N becomes the smallest integer k such
3 that X+ 4% is at least eNs. The exact computation of E(Ke(N—Ns)2 + Ksn) is
- impossible. However, by the well-known renewal theory (cf. Chow et al (1979))
i as N_ becomes large,
3 E(K_(N-N)?) = K N_(0/0)°. (2.1)
We shall consider the right-hand-side of (2.1) as an inherent fixed cost which
,f cannot be eliminated even though we may know 6.
-,
4
3. The mean € is an unknown constant.
E Again, we assume the X’s follow a nonparametric distribution; but this time
'2 even the mean 6 is unknown. Suppose a sample {Xl,...,xn} of fixed sample size
! n is taken. A reasonable choice of én is (Xl+...+xn)/n, which is also the
g nonparametric maximum likelihood estimate. Then
W= Kb 4K+ (N - n)8 =8 N, (3.1)
and
:
] 3
:
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N, = N-n = inf {k>1: Kogp teeoot Xk 2 en (Ns-n)}.
The risk function is
2
E(Ke(N—NS) + Ksn)
9 6 -0
_ n,2 2 n "2
= KeE(Nn - (Ns—n) é—) + Ke(NS - n) E(“é‘) + Ksn
6 6 -8

n,, n
+ 2Ke(Ns—n)E(Nn - (Ns—n)ér)(_—é—)
6 2
n,2 2 ¢
KeE(Nn - (Ns—n)'é—) + Ke (Ns—n) v Ksn
no
en en—e
+ ZKe(Ns—n)E(Nn—(Ns'n)é_)('ér‘)-

]

By the renewal theory, as Ns becomes large

>

BN, - (N-m)gh? = (n-n)(ore)?,

ol

and

1<(_3Ns(a/e)2 sk 4520 (582 (K, - K, (0/6)%

2 2 s
= -KeNS(c/e) + Ke(q/e) -t Ksn.

n

(3.2)

(3.4)

(3.5)

Since the inherent fixed cost in (3.5) does not involve the sample size n, we

shall consider the following transformed risk function (with n not greater

than N_)
S
2
2 Ns
R =K (¢/8)" -=- + K _n
n e( / ) n S
4
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which is minimized by taking n, to be the integer closest to

]
ég) 6 N (3.7)

)

and the transformed risk function is approximately

g 4
2 s Ns ((Ke Ks) ). (3.8)

Now if the coefficient of variation o¢/6 is known, then (3.7) is computable, and
one simply takes a sample of size n, which is optimal in the sense of
minimizing the transformed risk function (3.6), and determines an additional
weight of (Ns - n*)(x1+...+Xn )/n,. If the coefficient of variation ¢/8 is

*
also unknown, then one can determine the sample sequentially by

kg
T= inf{an: n [;g) xEN} (3.9)
s o
n

where m is a positive integer greater than one and

en = (Xl+...+xn)/h and (3.10)
2 1°0 ~ 2
&, =13 % (Xi - en) . (3.11)
Then
6 ©(0-5)
- ., n, n - "n 1
T = inf {n>m: — + o?n > Xn} (3.12)

L
where X\ = é— (Ks/Ke)z. That is, take a sample of size T and determine the
s

additional weight of (NS—T)(X1 +oo.t XT)/T. By the strong law of large
numbers, it is straightforward to show that as Ng becomes large, provided the
distribution of X is continuous or m goes to infinity as Ng but at a slower

pace,
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T=n, a.s. (3.13)
that is; the ratio of the sample size t over the optimal sample size goes to
one almost surely. The following theorem on the average sample number is also

true.

Theorem. ET =z n, as NS goes to infinity.
That is the average sample size of the sequential procedure is equal to the
optimal sample size to the first order. The precise conditions on the X’s and

the proof will be given in the Appendix, as the proof is rather technical.

4. The mean © is an unknown random variable having a known distribution

In this section, we shall assume that given 6, the X’s have a parametric
density and the ccefficient of variation p = ¢/6 is known. Specifically, given

6, let the probability density of the X’s be

-1l —ax/6
f(x;0) = (2ex)___e , x>0 (4.1)
8T ()
0 , x <0
where a = l/pz, and 6 has a density
a -b/6
n(e) = (~==—g——-- ] >0 (4.2)
6a+lr(a)
0 , 8<0

where a and b are known positive constants. Following the development as in

Section 3, we have an asymptotic risk equal to

N _-n 6 6

S
Kg —=—= + K, (Ns—n) E(-———) K.n. (4.3)
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An obvious choice of en is

1
- E(g1X -0 iX))
n

(4.4)

1
E(=x5|X;, .00, X))
e2 1 n

a(x1+...+Xn) + b

No + a+l !
and the expression in (4.3) becomes

N -n

S
Ke ‘-—a— + Ke(Ns -n) ______ + K_n, (4.5)

which is minimized by taking n, to be the nonnegative integer closest to

3 3

s s
And the total weight can be determined by

1 +"'+Xn* + (Ns—n*) en*. (4.7)

w=X

5. The mean 6 is an unknown random variable having an unknown distribution.

We shall make the same assumption as in Section 4 except that a and b in
the prior distribution are unknown and that p may not be known. 1In this case,
the optimal sample size (4.6) can not be computed and the estimate (4.4) can
not be evaluated. If it is known that a is small (small a corresponds to large

variance of the prior distribution), then (4.6) is quite close to

k
e
== pN (5.1)
[:S] s

We recommend a sample size of an integer n closest to (5.1) and estimate 6 by o,

= (Xl +o..4 Xn)/n and determine the weight by

~J
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NS(X1+...+Xn)/n. (5.2)

If p is also unknown, the sequential procedure as described in Section 3 is

recommended. That is, the sample size T is

T

1
- %
. . ~ _g
inf {n >m: /5 > @s] N/}, (5.3)
where m is a positive integer greater than one,

~

e = (Xl+...+Xn)/h, and (5.4)
.2 n )
5, = 1/n f (Xi - en) . (5.5)

Then the weight determined is

W= Ns(xl+...+XT)/T. (5.6)
If a is not known to be small, then (5.1) will not be close to (4.6). There does
not seem to be much one can do except in the case when there are previous data
available. In this case, an empirical Bayes approach can be applied. A study of

such an approach will be conducted elsewhere.

6. An example.

We shall present a table of optimal sizes for different values of p, a, b,
Ks' Kg and Ns. The optimal sample size in the Bayes columns is computed from

(4.6), that is, the nonnegative integer closest to

0\ , 2
[;i] PN + (a+l)p [p[‘;i] -1] (6.1)

and the optimal sample size for the nonparametric column is computed from (3.7),

the integer closest to
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We have chosen the values such that the first part corresponds quite closely to

-‘--

that reported by Guttman and Menzefricke (1986). Notice that the optimal sample

sizes are quite unstable in the Bayes case as a varies. Of course, when a is

T oAk

large, it corresponds to small variance in the prior distribution which amounts

L K

to saying that the mean is known quite precisely and thus less sample size needs

to be taken. The nonparametric column also gives the asymptotic average sample

LRSS

numbers in the first order approximation when they are big.
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. Table 1. Optimal Sample Sizes (N_ = 20,000; K_ = 1)
k =4 ~F
\,
,
Bayes Nonparametric
a
E 360000 36000 3600 360 36
K A. p = 1/60
Ko=100 3250 3325 3332 3333 3333 3333
1 235 323 332 333 333 333
.01 0 23 32 33 33 33
.0001 0 0 2 3 3 3
B. p = 1/30
Ko=100 6400 6640 6664 6666 6667 6667
1 280 628 663 666 667 667
.01 0 27 63 66 67 67
.0001 0 0 3 6 7 7
C. p = 1/15
Ko=100 12800 13280 13328 13333 13333 13333
1 0 1184 1318 1332 1333 1333
.01 0 0 117 132 133 133
.0001 0 0 0 12 13 13
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Appendix.
Theorem: Let X, TR STERE be independent and identically distributed random

variables with positive mean 6 and finite nonzero variance 02. For each n)l,

let
6 =1 (X+...4%X) (A.1)
n S (XKD, .
.2 11 -2 ;
S =n .E (Xi - en) , and {(A.2)
i=1
é é (o0-5_)
. n n n 1
T = inf { npm: T + —;Gr—]———— 2 A } (A.3)

where m is a positive integer bigger than one, and A\ is a positive constant.
Assume the distribution of X is continuous. If E(Xz)p < @ for some p > 1, then

(i) {(Ax)P, 0 < X\ < 1} is uniformly integrable, and
(ii) E[xt - gIP » 0 as X » 0.

Prcof: Consider

6 (o-3)
R = —T-—x-- (A.4)
n
6 1 n 6 (6 -8)2
pereDes L (0% - (X.-0)%) + B
6o {(o+o ) n =1 i ca_{o+o_)
For any small € > 0, let
o = inf {n)1: len—9|5e} (A.5)

Then since E(Xz)p < «®, by Lemma 3 in Chow et al (1983), Ea2p < », Make copies of

(1)  (2)

o and denote them by o« '™/, . and let o, = a(l) +.o04 a(n). For each n)1,

let




2 2 2
-80)7) +...+ (o - (X - 6)
n_1+1 o

where @) = 0. Since E(X)P < ® and E o®P < =, by Lemma 2(ii) in Chow et al

- (Xa ) (A.6)

(1983), E|Y,|P < =. Define

: ) B = inf {ndl: |Y +...+Y |<eo ) (A.7)
Since E|Y1|p < ®, by Lemma 3 in Chow et al (1983), EBP < ». Let t = ag. Since
Ea?P < ® and EEP < =, by Lemma 2(iii) in Chow et al (1983), EtP < ®. And t is a

stopping time. Make copies of t and denote by t(l), t(z), ... and let t, = (1)
+...4 t(n).

TV Ty

Then for each n > 1,

ai > 0% - e-¢2. (A.8)
n
Hence
IR |
tn
« ___{6xg) (e+e2) (A.9)
" o(0? - e-£2)% (o + (0% - £-22)%)

By Theorem 1 of Yu (1986), {(Xr)p, 0 < X<1} is uniformly integrable. By the
strong law of large numbers

AT - % » 0, almost surely, (A.10)
as X goes to zero. Hence as \ goes to zero

E|xt - glp

1

0; (A.11)

in particular, if X

1 b
ﬁ; (KS/Ke) '

Ns. (A.12)
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